ADVANCED TECHNOLOGY RESEARCH IN UNIVERSITIES

Inaugural Address at the
Inauguration of Molecular & Nanomedicine Research Unit at
Sathyabama University

by

Dr. A. SIVATHANU PILLAI

Distinguished Scientist & Chief Controller R&D, DRDO & CEO&MD, BrahMos Aerospace

17 March 2014

PURSUIT OF SCIENCE FOR HUMANITY

- The growth of science and technology has been phenomenal in the recent past, improving the quality of life of the human being.
- Emergence of new technologies has opened up myriad of applications and now it is left to the ingenuity and imagination of the human mind to explore and exploit them further.
- With the established base of multiple technologies all over the world, scientific minds have to come together for new innovations.

PURSUIT OF SCIENCE FOR HUMANITY

- In this endeavour to further innovations, Sathyabama University takes the lead by establishing "Molecular & Nanomedicine Research Unit"
- While every institution is waiting for Govt. funding to undertake research, Dr Jeppiar has taken pioneering leadership in promoting advanced technology research in a Private University to boost innovation in the country.
- Dr. Jeppiar's visionary thoughts in this direction is a remarkable step for others to follow.

The Nalanda University - Knowledge Hub

- * Once housed 9 million books
- Was the center of education for scholars from more than
 32 countries
- Many Greek, Persian and Chinese students studied here

The wonder that was India

"India's glorious past is embedded with a

Rich Scientific and Technological Heritage from the Vedic age
and is an inspiration to create a scientifically advanced
and spiritually enlightened human society in which
peace, prosperity and happiness together
create a heaven on earth"

AL Basham

Reader in the History of India in the University of London

Published in 1954

EVERYONE OF US BELONG TO THIS GREAT GENE

IF WE CAN ACTIVATE THAT
GENE RESIDING IN US,
WE WILL MAKE INDIA
A GREAT NATION

NANO SPY FOR RECONNAISANCE

Artificial hummingbird

- Wingspan : 16 cm;
- Weight: 19 gms
 (less than an AA battery)
- Speed: 17 km/h (Three axes)

Source: DARPA

- Contains Nano batteries, motors, & communications systems; as well as the video camera payload
- Can climb and descend vertically; fly in all directions
- Manoeuvres using its flapping wings for propulsion and attitude control
- Could be deployed to perform reconnaissance and surveillance in urban environments or on battlefields

NANOMEDICINE

• Premise:

Nanometer-sized particles have optical, magnetic, chemical and structural properties that set them apart from bulk solids, with potential applications in medicine.

• Potential applications

DRUG DELIVERY IMAGING

DIAGNOSIS & SENSING THERAPY

Nanomedicine allows doctors to approach the human body at the cellular and molecular levels

- Nanocrystaline material to increase oral bioavailability of drug molecules
- Different dosage forms (e.g. Nano-suspensions for parentals)
- Different routs of administrations (Ex. Nasal and ophthalmic delivery provides a patient-friendly alternative)
- Nanoparticles permeate in a typical tumor tissue and can be retained.
- Called as "Stealth" liposomes with size <200nm
- Can be attached with ligands for active targeting

MEDICAL IMAGING

Optical properties of nanoparticles depend greatly on its structure. Particularly, the color (wavelength) emitted by a quantum dot (a semiconductor nanoparticle) depends on its diameter.

CdSe nanoparticle (QD) structure

Source: Laurence Livermore

Solutions of CdSe QD's of different diameter

Source: Department of immunology, University of Toronto

Quantum Dots (QD) can be injected to a subject, and then be detected by exciting them to emit light

Imaging of QD's targeted on cellular structures

Nano Letters 2008., Vol. 8, pp3887-3892

- · Teeth cleaning robots
- Lung cleaning: remove toxic effects due to smoking, foreign particles and fibers
- Removal of extra fats from arteries and cleaning the clots
- Elimination of H1N1 Virus

NANOBOTS & NANOLASERS

MAY HOLD THE KEY TO THE FUTURE
SURGERY INSIDE THE HUMAN BODY

- Can swim through the bloodstream
 - Dominate the viscous forces
 - Determined by the total surface area
- Intracellular nanodevices
 - Intended to perform inside human tissues

NANOMEDICINE IS THE FUTURE

- 1. Nanoparticles have very special properties that make them attractive for nanomedicine
- 2. Nanoparticles can be functionalized with antibodies to target their binding toward specific cells
- 3. Nanoparticles can be used in diagnosis through the detection of biomarkers
- 4. Nanoparticles can respond to external radiation and release heat, killing cells around them

Contd.

NANOMEDICINE IS THE FUTURE

- 5. Nanoparticles can be made of lipids or polymers than decompose once a target is reached and deliver a pharmaceutical agent
- 6. Quantum dots are special nanoparticles that emit light of different colors according to its diameter, and can be used for complex diagnosis
- 7. Poly Ethylene Glygol (PEG) is the most used polymer to coat nanoparticles due to the biocompatibility and biomobility that confers to the nanoparticle
- 8. Targeted nanoparticles offer a light of hope for the fight against cancer / HIV

RESEARCH AREAS

- * Carbon Nanotubes
 - **Growth (CVD, PECVD)**
 - Characterization
 - AFM tips
 - Metrology
 - Imaging of Mars Analog
 - Imaging Bio samples Electrode development

 - Biosensor (cancer diagnostics)
 Chemical sensor

 - **Logic Circuits**
 - **Chemical functionalization**
 - **Gas Absorption**
 - **Device Fabrication**
- **Molecular Electronics**
 - Synthesis of organic molecules
 - Characterization
 - **Device fabrication**
- **Inorganic Nanowires**
- **Protein Nanotubes**
 - **Synthesis**
 - Purification
 - **Application Development**

- Genomics
 - Nanopores in gene sequencing
 - · Genechips development
- **Computational Nanotechnology**
 - CNT Mechanical, thermal properties
 - CNT Electronic properties
 - CNT based devices: physics, design
 - CNT based composites, BN nanotubes
 - **CNT** based sensors
 - **DNA transport**
 - Transport in nanopores
 - Nanowires: transport, thermoelectric effect
 - Transport: molecular electronics
 - Protein nanotube chemistry
- **Quantum Computing**
- **Computational Quantum Electronics**
 - Noneq. Green's Function based Device Simulator
- **Computational Optoelectronics**
- **Computational Process Modeling**

